Planet Dari Galaksi Lain Ditemukan di Bima Sakti

Satu lagi penemuan baru dalam dunia extrasolar planet diumumkan malam ini. Penemuan kali ini menarik, karena bisa member gambaran tentang evolusi Tata Surya di masa mendatang khususnya untuk planet-planet gas raksasa yang tengah mengitari Matahari.
Bintang itu dari Extragalaksi
Ilustrasi sistem HIP 13044. kredit : ESO/L. Calçada
Lebih dari 15 tahun para astronom telah berhasil mendeteksi lebih dari 500 planet yang mengitari bintang lain di lingkungan kosmik, namun belum ada yang berhasil menemukan planet di galaksi lain.
Exoplanet yang baru ini ternyata mengorbit sebuah bintang yang berasal dari extragalaksi (galaksi lain) tapi kemudian masuk menjadi bagian dari galaksi Bima Sakti. Hal menarik lainnya, exoplanet ini mengorbit sebuah bintang yang sudah mendekati masa akhir hidupnya. Exoplanet ini juga bisa jadi akan mengakhiri hidupnya dengan ditelan oleh bintang yang ia kitari.
Planet tersebut bergerak mengelilingi sebuah bintang yang dikenal berada dalam aliran Helmi. Bintang-bintang dalam aliran Helmi merupakan kelompok bintang berasal dari galaksi katai yang kemudian ditelan oleh Bima Sakti, sebagai aksi kanibalisme sekitar 6 – 9 milyar tahun lalu.
Menurut Rainer Klement dari Max-Planck-Institut für Astronomie (MPIA) yang bertanggungjawab untuk memilih target bintang, “Inilah untuk pertama kalinya para astronom berhasil mendeteksi sistem keplanetan dalam aliran bintang yang asalnya dari galaksi lain. Sebenernya karena masalah jarak yang sangat jauhlah maka sampai sekarang belum ada konfirmasi hasil pendeteksian planet di galaksi lain. Namun dalam penggabungan kosmik seperti inilah, planet di extragalaksi bisa berada dalam jangkauan kita.”
Bintang yang jadi induk dari planet baru tersebut dikenal sebagai HIP 13044, dan berada pada jarak 2000 tahun cahaya dari Bumi di selatan rasi Fornax (si tungku perapian). HIP 13044 bukan lagi bintang muda yang masih segar seperti halnya Matahari. Ia sudah ada di masa tuanya dan menuju pada akhir hidup. Saat ini HIP 13044 berada dalam fase raksasa merah, fase ketika bintang sudah kehabisan hidrogen di inti dan kemudian mengembang. Pada fase ini bintang HIP 13044  kembali berkontraksi dan mulai melakukan pembakaran helium di inti.
HIP 13044 b Cerminan Masa Depan Jupiter?
Citra medan lebar pada cahaya tampak dari area disekeliling HIP 13044. Kredit : ESO & Digitized Sky Survey 2. Acknowledgment: Davide De Martin
Exoplanet yang memiliki massa minimum 1,25 massa Jupiter ini merupakan planet pertama pada sistem keplanetan bintang HIP 13044 dan disebut sebagai planet  HIP 13044 b. Pendeteksian HIP 13044 b dilakukan melalui teknik kecepatan radial, dimana para pengamat mendeteksi planet dari wobble (getaran) yang sangat kecil yang terjadi pada bintang sebagai akibat tarikan gravitasi dari obyek yang mengorbit dirinya.  Untuk bisa mendapatkan pengamatan yang presisi tim pengamat menggunakan spektograf FEROS (Fibre-fed Extended Range Optical Spectrograph) yang dipasang pada teleskop MPG/ESO 2,2 meter di ESO La Silla Observatory, Chile.
Yang menarik dari HIP 13044 b adalah keberhasilannya untuk selamat dari periode ketika bintang induknya mengembang setelah kehabisan persediaan hidrogen di inti. Hanya beberapa planet yang berhasil melewati masa peralihan tersebut dengan selamat.  Sampai saat ini, bintang yang berada pada cabang horisontal masih belum terpetakan seuruhnya oleh para pemburu planet.
Menurut Johny Setiawan, astronom MPIA yang juga pimpinan penelitian, “penemuan ini merupakan bagian dari kajian sistematik untuk mencari exoplanet yang mengorbit bintang-bintang yang mendekati akhir hidupnya.  Dan yang penemuan ini jadi sangat menarik jika kita juga mempertimbangkan masa depan Tata Surya saat Matahari memasuki masa tuanya sebagai bintang raksasa merah sekitar 5 milyar tahun dari sekarang.”
HIP 13044 b berada sangat dekat dengan bintang induknya. Bahkan pada posisi terdekatnya (perihelion), jaraknya hanya 0,055 jarak Matahari – Bumi (8.250.000 km) atau kurang dari diameter bintang dari permukaan bintang.  Planet ini menghabiskan waktu 16,2 hari untuk menyelesaikan putarannya pada bintang.
Hipotesa yang dilakukan Johny dan timnya menunjukkan kalau orbit planet HIP 13044 b pada awalnya jauh lebih besar namun kemudian bergerak semakin mendekati bintang selama fase raksasa merah berlangsung.
Planet-planet lain yang bergerak mendekat bisa jadi tidak seberuntung HIP 13044, karena bintang di cabang horisontal bergerak relatif cepat. Menurut Johny, salah satu penjelasan mengapa HIP 13044 berputar lebih cepat adalah karena ia melahap planet-planet dalam.
Meskipun saat ini HIP 13044 b bisa lolos dari dari nasib yang sudah dialami planet dalam, bintang HIP 13044 masih akan mengembang pada tahap evolusi berikutnya. Pada saat itu exoplanet HIP 13044 b juga akan mengalami nasib yang sama dan akan ditelan oleh sang bintang, artinya akhir hidup bagi si planet tersebut. Pertanyaannya apakah ini sebuah ramalan akan masa depan planet luar di Tata Surya, seperti Jupiter kala Matahari mendekati akhir hidupnya?
Pertanyaan lain yang timbul, adalah bagaimana planet raksasa terbentuk. Ini disebabkan karena si bintang induk hanya memiliki sedikit elemen yang lebih berat dari hidrogen.  Bahkan kandungannya lebih sedikit dari bintang lain yang diketahui memiliki planet.
Bagi Johny Setiawan dan rekan-rekannya hal ini merupakan teka-teki karena pemodelan pembentukan planet yang sudah diterima akan sulit menjelaskan bagaimana sebuah bintang yang hanya memiliki sedikit elemen berat bisa membentuk planet. Karena itu, tentu planet yang mengorbit bintang seperti ini terbentuk dengan cara yang berbeda.
Sumber : ESO
Tags: , , , , ,

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Memburu materi gelap: Satu gejala, Tiga teori

Bayangkan bila pada suatu hari kita mengetahui bahwa di tanah kosong di seberang rumah kita terdapat rumah yang ukurannya sama persis dengan rumah kita namun tersusun atas bahan tak terlihat. Bahan ini tak dapat dilihat oleh panca indera maupun oleh instrumen apapun, dan hanya bisa dideteksi melalui pengaruh gravitasi yang ditimbulkan bahan tersebut. Berita seperti ini pastilah mengagetkan.
Situasi seperti inilah yang dihadapi astronomi modern saat ini. Pengamatan modern menunjukkan bahwa hampir 95 persen dari alam semesta kita tersusun atas materi yang tak bisa kita pahami. Tentu saja bagi seorang astronom hal ini sangat mengagetkan. Semua yang kita amati di alam ini: planet, bintang, galaksi, gas dan debu, hanyalah 5 persen dari keseluruhan kandungan alam semesta. Astronom Inggris Martin Rees berkata, “cukup memalukan mengetahui bahwa 90% alam semesta ternyata belum diketahui.” Namun inilah ilmu pengetahuan, selalu menemukan hal baru untuk dijelajahi. Penelitian mengenai hakikat materi gelap dan energi gelap kini menempati garda depan penelitian astronomi.

Pengamatan materi gelap

Gugus Galaksi Coma dipotret oleh Teleskop Antariksa Hubble. Hampir semua objek yang ada di foto ini adalah Galaksi, masing-masing mengandung milyaran bintang. Galaksi-galaksi ini saling berinteraksi satu sama lain dalam ikatan gravitasi. Sumber: APOD.
Indikasi pertama mengenai adanya materi gelap diamati hampir 80 tahun lalu ketika astronom Swiss keturunan Bulgaria, Frits Zwicky, meneliti gerak galaksi-galaksi anggota Gugus Galaksi Coma. Dengan menggunakan spektrograf, Zwicky mengukur kecepatan gerak tujuh galaksi anggota gugus ini lalu—dengan menggunakan Hukum Newton—menghitung massa total Gugus ini berdasarkan kecepatan gerak mereka. Selanjutnya Zwicky mengukur seberapa terang galaksi-galaksi yang sama lalu menghitung berapa massa total Gugus berdasarkan kecerlangannya. Ternyata, “massa dinamika”, yaitu massa yang dihitung dari gerak galaksi-galaksi tersebut, empat ratus kali lebih besar daripada “massa cerlang” yang dihitung dari kecerlangan mereka!
Fritz Zwicky. Ini foto beliau yang sebenarnya, orangnya memang demikian.
Zwicky mengumumkan penemuan ini di hadapan rekan-rekannya dan menyimpulkan adanya “materi gelap” (istilah “materi gelap” atau dark matter diciptakan oleh Zwicky) yang tak bisa dideteksi instrumen namun bisa dirasakan pengaruh gravitasinya. Penemuan ini tak dipedulikan oleh rekan-rekannya karena pengukuran pada masa itu masih kurang teliti untuk bisa meneliti objek seredup Gugus Galaksi Coma, sehingga hasil-hasil Zwicky lebih dianggap sebagai efek kesalahan instrumen ketimbang sebuah gejala yang riil. Terlebih lagi, bagi banyak orang Zwicky bukanlah karakter yang menyenangkan karena sikapnya yang—dalam istilah orang Indonesia—nyolot. Tidak hanya ia pernah mengajak rekannya berkelahi namun juga ia sering menunjukkan kekuatan fisiknya dengan melakukan push-up satu tangan di ruang dosen Caltech, membuat beberapa rekannya merasa terancam dan tidak mau lagi bekerja sama dengannya. Namun demikian, Zwicky adalah astronom yang brilian dan kreatif. Ia tidak takut salah bila mencoba solusi yang dianggap tak wajar. Tidak hanya “materi gelap,” istilah “supernova” juga adalah buah tangannya.
Vera Rubin mengukur spektrum galaksi di tahun 1970an. Pada tahun 1948 ia ditolak masuk Universitas Princeton karena perempuan dianggap tidak mampu menempuh program pascasarjana. Ia memperoleh gelar PhD dari Universitas Georgetown pada tahun 1954.
Selama setengah abad berikutnya ide mengenai materi gelap dilupakan, sampai Vera Rubin—satu dari sedikit astronom perempuan pada masa itu—meneliti gerak bintang dan gas di beberapa galaksi di sekitar Galaksi Bima Sakti. Dengan menggunakan spektrograf, Rubin mengamati kecepatan gerak bintang-bintang di beberapa bagian dalam sebuah galaksi. Menurut Hukum Newton, semakin jauh sebuah objek berlokasi dari sebuah konsenstrasi massa, semakin lambat kecepatannya. Bumi, misalnya, bergerak mengitari Matahari dengan kecepatan rata-rata 30 km/s. Namun, Jupiter, karena letaknya lima kali lebih jauh dari jarak Bumi-Matahari, bergerak lebih lambat dengan kecepatan rata-rata 13 km/s. Hal yang sama juga berlaku dalam sistem galaksi. Kita melihat bahwa daerah pusat galaksi spiral lebih terang daripada daerah piringannya, dan semakin ke pinggir kecerlangan sebuah galaksi semakin meredup. Oleh karena itu wajarlah bila kita menyimpulkan bahwa lebih banyak massa terkonsentrasi di pusat galaksi daripada di pinggir, dan kita mengharapkan bahwa kecepatan rotasi bintang-bintang di pinggir galaksi akan lebih lambat daripada kecepatan rotasi bintang-bintang yang lebih ke pusat.
Akan tetapi kenyataan yang diamati Rubin sangatlah berbeda. Bintang-bintang di pinggir galaksi bergerak sama cepatnya dengan bintang-bintang yang lebih dekat ke pusat galaksi! Apabila bintang-bintang di pinggiran galaksi bergerak secepat ini, maka mereka seharusnya tercerai-berai. Namun tidak ada indikasi yang menunjukkan ini dan mereka tetap bergerak secara teratur, seolah-olah ada massa tambahan yang “mengikat” mereka sehingga tetap stabil. Adanya “massa tambahan” inilah yang kemudian dijelaskan sebagai adanya materi gelap.
Kurva rotasi Galaksi Bima Sakti. Sumber: Nick Strobel, www.astronomynotes.com
Dengan mengukur kecepatan rotasi di beberapa tempat di sebuah galaksi, Rubin dapat membuat sebuah grafik seperti di atas yang memetakan kecepatan rotasi galaksi di beberapa tempat relatif terhadap jaraknya dari pusat galaksi tersebut. Grafik seperti ini disebut kurva rotasi. Bila kita menghitung kecepatan rotasi hanya berdasarkan massa yang kita lihat yaitu bintang, gas, dan debu, maka kecepatan rotasi seharusnya menurun seiring dengan semakin jauhnya objek dari pusat galaksi. Namun kenyataannya kecepatan orbit objek-objek yang jauh dari pusat galaksi sama besarnya dengan kecepatan orbit objek-objek yang lebih dekat. Rubin memperkirakan bahwa massa tambahan yang tak terlihat ini mencapai 10 kali lipat dari massa yang terlihat dan terkonsentrasi di daerah tepi galaksi, di daerah yang disebut halo galaksi.
Komposisi alam semesta berdasarkan pengamatan dan perhitungan modern.
Keberadaan materi gelap kini tak bisa disangkal lagi karena pengamatan Vera Rubin lalu dikonfirmasi oleh astronom-astronom lain yang melakukan penelitian serupa pada galaksi-galaksi lain. Perhitungan modern kini menunjukkan bahwa alam semesta yang kita amati hanyalah sekitar 5% saja dari komposisi total alam semesta, sementara sekitar 25% adalah materi gelap dan 75% adalah “energi gelap” yang bertanggung jawab atas dipercepatnya ekspansi alam semesta.
Berikut ini saya akan membahas tiga calon penjelasan untuk “materi gelap,” tanpa ada urutan tertentu.

Teori pertama: Materi gelap adalah MACHO

“Massa yang hilang” ini dijelaskan secara sederhana sebagai objek-objek yang punya massa besar, sangatlah padat (compact), namun tak bercahaya atau sangat redup sehingga berada di luar batas kepekaan instrumen yang ada. Objek-objek seperti ini antara lain bintang katai putih, bintang katai merah, bintang neutron, bintang katai coklat, planet-planet raksasa seukuran Jupiter, dan lubang hitam ukuran kecil. Bila benda-benda ini jumlahnya sangat banyak, melebihi materi-materi lain yang bercahaya yang bisa kita amati, maka gabungan total massa keseluruhan objek-objek ini dapat secara gravitasional mempengaruhi dinamika di dalam sebuah galaksi dan menjelaskan dari mana asal “tambahan massa” dalam kurva rotasi. Berdasarkan petunjuk dari kurva rotasi, objek-objek ini pastilah terserak di penjuru galaksi namun akan terkonsentrasi di daerah halo. Itulah sebabnya mengapa objek-objek ini secara kolektif dinamakan sebagai MACHO atau MAssive Compact Halo Objects (Objek halo masif dan padat).
Prinsip pengamatan microlensing
Karena MACHO adalah objek yang padat, maka medan gravitasinya sangat kuat sehingga dapat membelokkan jalannya cahaya. Medan gravitasi ini dapat berfungsi sebagai lensa untuk memfokuskan cahaya yang melewati MACHO. Ilustrasinya dapat dilihat pada Gambar di samping. Apabila sebuah MACHO (dalam contoh ini adalah sebuah katai coklat) lewat di antara kita dan sebuah bintang, maka cahaya yang berasal dari bintang tersebut selama beberapa saat akan terfokus ke arah kita sebagai pengamat dan akibatnya bintang akan menjadi nampak lebih terang selama beberapa saat, lalu meredup dan kecerlangannya kembali ke semula. Apabila kita mengamati porsi langit yang cukup besar dalam waktu yang lama, bukan tidak mungkin kita akan dapat mengamati peristiwa ini. Tekniknya dengan demikian adalah menggunakan teleskop yang medan pandangnya luas dan detektor yang sangat sensitif dan dengan demikian dapat mengambil gambar dalam waktu eksposur yang sangat singkat dan terus menerus sepanjang malam, dan juga dilakukan secara otomatis dan terprogram. Salah satu program semacam ini adalah Proyek OGLE yang diprakarsai oleh Universitas Warsaw, Polandia. Hampir dua puluh tahun OGLE beroperasi, mereka tidak hanya berhasil menemukan sejumlah peristiwa microlensing yang diakibatkan oleh lewatnya MACHO, namun juga sejumlah planet ekstrasolar sebagai hasil sampingan.
Penemuan objek-objek MACHO melalui microlensing menunjukkan bahwa mereka memang ada, namun bukanlah satu-satunya materi gelap dan terlebih lagi bukanlah komponen paling dominan. Hal ini karena partikel-partikel dasar penyusun MACHO adalah partikel-partikel baryon dan jumlah total mereka di alam semesta tidak cukup besar untuk dapat dianggap materi gelap. Baryon adalah partikel apapun yang tersusun atas tiga quark, atau dengan kata lain adalah partikel biasa yang kita ketahui selama ini: proton dan neutron. Kelimpahan total partikel baryon di alam semesta ini dapat diperkirakan dari perhitungan pembentukan atom-atom dasar pada waktu-waktu awal sesudah Big Bang terjadi (disebut juga nukleosintesis Big Bang), dan jumlah massa total partikel baryon tidak cukup untuk menjelaskan massa total materi gelap. Jumlah total partikel baryon paling-paling hanya 10 persen saja dari total materi gelap dan oleh karena itu sisanya kemungkinan bisa dijelaskan oleh adanya partikel nonbaryon yang eksotik dan belum diketahui keberadaannya.

Teori kedua: Materi gelap adalah WIMP

Alternatif kedua untuk menjelaskan materi gelap adalah keberadaan partikel-partikel nonbaryon. Partikel nonbaryon adalah partikel selain dari proton dan neutron: bisa neutrino, elektron bebas, atau partikel-partikel eksotik lain seperti partikel-partikel supersimetri atau aksion. Partikel ini haruslah berinteraksi melalui gaya nuklir lemah dan gravitasi, tidak melalui gaya elektromagnetik karena bila demikian pastilah kita bisa mendeteksi mereka. Selain berinteraksi lemah, partikel ini juga harus masif relatif terhadap partikel-partikel lainnya. Itulah sebabnya, agar kontras dengan MACHO, partikel ini kita namakan WIMP atau Weakly Interacting Massive Particles (Partikel masif yang berinteraksi lemah).

WIMP adalah neutrino?

Berhubung partikel WIMP hanya berinteraksi oleh gaya nuklir lemah dan gravitasi, maka mendeteksi partikel ini—apabila ada—juga sangat sulit. Salah satu kandidat partikel WIMP berdasarkan persyaratan ini tidak lain adalah neutrino. Partikel ini tidak bermuatan listrik (netral) dan oleh karena tidak berinteraksi lewat gaya elektromagnetik dan hanya berinteraksi lewat gaya nuklir lemah. Neutrino memiliki massa, walaupun sangat kecil, dan oleh karena itu dapat berinteraksi secara gravitasi dengan objek-objek lain. Apabila neutrino tersedia dalam jumlah berlimpah di alam ini, mungkinkah agregat massa totalnya dapat mengisi “massa tambahan” yang diperlukan? Untuk menjawab ini, kita harus dapat memperkirakan berapa massa total seluruh neutrino di alam ini. Perhitungan ini dapat didekati dengan mencoba mendeteksi neutrino dari sumber-sumber neutrino di sekitar kita, antara lain dari Matahari dan dari supernova terdekat.
Salah satu percobaan pertama untuk mendeteksi neutrino dilakukan oleh astrofisikawan Ray Davis, Jr. dan John Bahcall di dasar Tambang Emas Homestake di Dakota Selatan, Amerika Serikat. Di dasar tambang yang tergelap dan jauh dari gangguan radiasi lain yang dapat mengganggu percobaan, sebuah tangki 100 000 gallon diisi penuh cairan pencuci baju. Sekali waktu neutrino yang datang dari Matahari dan melewati tangki ini akan mengubah Klorin dalam cairan ini menjadi Argon. Secara berkala cairan ini diayak untuk memisahkan Klorin dari Argon, dan dari jumlah Argon yang ditemukan kita dapat memperkirakan berapa jumlah neutrino yang melewati tangki tersebut. Untuk pertama kalinya percobaan ini berhasil membuktikan keberadaan neutrino.
Namun demikian, neutrino kemungkinan besar bukan partikel materi gelap. Berdasarkan simulasi komputer penciptaan struktur skala besar dan galaksi-galaksi di alam semesta dini, peran neutrino sebagai materi gelap gagal menciptakan struktur skala besar dan galaksi-galaksi yang konsisten dengan apa yang kita amati dewasa ini. Pembentukan struktur dan galaksi berlangsung terlalu lama atau bahkan kebalikannya yaitu terlalu banyak galaksi. Oleh karena itu neutrino sebagai materi gelap kini semakin ditinggalkan dan para astronom beralih ke partikel nonbaryon lainnya yaitu partikel supersimetri.

WIMP adalah partikel supersimetrik?

Dalam teori fisika, supersimetri (atau biasa disingkat SUSY) mengandaikan adanya pasangan untuk setiap partikel elementer. Pasangan ini disebut superpartner dan memiliki karakteristik yang sama (massa dan bilangan kuantum), hanya saja bilangan spin mereka berbeda sebesar 1/2. Kurang lebih delapan puluh tahun lalu, Paul Dirac melipatgandakan jumlah materi yang diketahui saat itu dengan memprediksikan keberadaan antimateri, sekarang jumlah materi ini harus dilipatgandakan lagi oleh teori supersimetri—bila teori ini nantinya terbukti benar. Partikel supersimetri yang menjadi kandidat terkuat adalah Neutralino. Partikel ini tercipta pada saat alam semesta masih berusia dini dan saat ini—bila mereka memang betul-betul ada—dapat dideteksi melalui dua cara: melalui detektor kriogenika di bawah tanah atau melalui teleskop neutrino.
Di sebelah kiri adalah partikel-partikel standard yang selama ini kita ketahui, terbagi atas keluarga quark (kuning), keluarga lepton (merah), boson pembawa gaya alias gauge boson (hijau), dan Boson Higgs (biru). Di sebelah kanan adalah superpartner mereka atau disebut juga partikel-partikel SUSY (supersimmetry). Superpartner identik dengan pasangannya, kecuali bilangan spin mereka yang berbeda sebesar 1/2.
Salah satu eksperimen yang bertujuan mendeteksi neutralino melalui kriogenika adalah CDMS atau Cryogenic Dark Matter Search. Berlokasi jauh di bawah tanah di Minnesota, Amerika Serikat, instrumen CDMS menggunakan substrat kristal Germanium dan Silikon yang didinginkan hingga suhunya hanya 1/50000 derajat Kelvin. Pada suhu sedingin ini, atom-atom Germanium dan Silikon dalam substrat kristal ini tidak lagi bergerak dan bersusun membentuk kisi-kisi. Bila partikel neutralino melewati kisi-kisi ini, kisi-kisi ini akan meregang seperti senar gitar dipetik dan akan bergetar sebelum akhirnya kembali diam ke posisi semula. Redaman ini akan melepaskan energi panas berwujud fonon, dan akan dapat dideteksi oleh lapisan tungsten di permukaan detektor. Untuk menjaga suhu detektor tetap stabil dan mengurangi kemungkinan detektor ini mendeteksi sesuatu partikel lain selain neutralino, detektor ini dilapisi berbagai lapisan insulasi yang dapat mencegah panas dari berbagai sumber memasuki detektor dan juga mencegah partikel selain neutralino menembus detektor.
Percobaan CDMS berusaha mendeteksi partikel WIMP secara langsung. Cara lain untuk mendeteksi partikel WIMP secara tidak langsung adalah dengan mengamati reaksi penghilangan WIMP menjadi partikel lain yang dapat dideteksi. Cara ini dilakukan antara lain dengan mengamati neutrino energi tinggi dari Matahari. Objek-objek bermassa besar seperti Matahari dapat menangkap neutralino dan menggiringnya ke arah inti Matahari. Di dalam inti Matahari, neutralino dapat saling bertumbukan dan menghilangkan sesamanya, dan menghasilkan neutrino. Pada inti Matahari, reaksi nuklir penggabungan empat inti hidrogen menjadi satu inti helium juga menghasilkan neutrino, namun energi neutrino ini kira-kira seribu kali lebih lemah daripada neutrino yang dihasilkan dari tumbukan neutralino. Neutrino energi tinggi hasil tumbukan neutralino ini kemudian akan melesat ke segala arah, namun sebagian akan mencapai Bumi dan akan dapat dideteksi oleh berbagai teleskop neutrino energi tinggi, misalnya Teleskop Neutrino ANTARES yang beroperasi di dasar Laut Tengah atau IceCube yang beroperasi di lapisan es di Kutub Selatan.

Teori ketiga: Materi gelap tidak ada

Penjelasan ketiga adalah materi gelap tidak ada dan gejala “massa tambahan” dalam kurva rotasi dijelaskan secara sederhana sebagai kurangnya pemahaman kita akan Hukum Ketiga Newton, dan oleh karena itu di hadapan gejala ini perlulah dimodifikasi. Konsep ini diajukan oleh Moti Milgrom dan ia menamakannya MOND atau MOdified Newtonian Dynamics (Dinamika Newton yang Dimodifikasi). Milgrom menjelaskan bahwa Hukum Ketiga Newton yang selama ini kita gunakan berlaku hanya untuk percepatan besar namun perlu diberi parameter tambahan bila kita meninjau percepatan yang sangat kecil. Jadi untuk kasus percepatan kecil, Hukum Ketiga Newton bukan lagi F = ma, tetapi F = m a2/a0, di mana a0 adalah sebuah konstanta percepatan yang besarnya kira-kira sekitar 10-8 cm s-2.
Gejala "massa yang hilang'' cenderung muncul pada sistem yang memiliki percepatan kecil (di samping kiri garis tegas vertikal). Oleh karena itu muncul ide bahwa Hukum Ketiga Newton perlu dimodifikasi untuk kasus percepatan kecil. Sumber: Majalah Science, 2009.
Kurva rotasi yang diprediksi MOND (titik-titik biru) cocok dengan kurva rotasi yang diamati (garis tegas). Ini adalah kasus untuk NGC1650, dan berhasil juga untuk galaksi-galaksi lain. Sumber: Majalah Science (2009)
Dengan menggunakan MOND, kurva rotasi dapat dijelaskan dengan baik sekali dan dihitung hanya dengan menggunakan massa baryonik. MOND juga memprediksikan adanya galaksi dengan kecerlangan rendah, dan juga gejala-gejala lain yang belum dapat diprediksi teori-teori materi gelap. Dengan mempelajari secara sistematik kurva rotasi galaksi-galaksi, nilai skala akselerasi dapat dipertajam harganya menjadi a0 ~ 1.2 x 10-8 cm s-2 dan ternyata nilainya serbasama untuk seluruh galaksi.
Namun demikian, MOND bukannya tanpa masalah. Usaha untuk menjelaskan kecepatan gerak gugus-gugus galaksi ternyata tidak berhasil dan kita harus menggunakan nilai berbeda a0, atau bahkan harus mengasumsikan keberadaan sejumlah kecil materi gelap. Dan yang terutama, MOND hanyalah teori fenomenologi yang bersifat empirik dan belum punya dasar fisika. Salah satu ujian terpenting bagi MOND adalah ia harus diperluas agar dapat bekerja juga dalam kerangka Relativitas Umum yang memandang gravitasi sebagai sebuah gejala geometri ruang-waktu.
Pengembangan MOND ke dalam kerangka Relativitas Umum diajukan oleh fisikawan Jacob Bekenstein dalam sebuah makalah yang diterbitkan tahun 2004. Teori yang diajukan Bekenstein ini dinamakan TeVeS atau Tensor-Vektor-Skalar. Teori TeVeS dianggap cukup lengkap dan terdefinisi dengan baik dan dapat digunakan memprediksikan gejala-gejala yang terjadi dalam skala kosmologi, yang terpenting adalah pembentukan struktur skala besar pada masa awal-awal alam semesta.
Penggunaan TeVeS untuk mensimulasi pembentukan struktur skala besar menunjukkan hasil yang kurang lebih sepadan dengan apa yang diamati sekarang. Akan tetapi, agar TeVeS bisa konsisten dengan data pengamatan, dibutuhkan keberadaan medan gravitasi tambahan yang perilakunya ternyata menyerupai materi gelap dalam wujud neutrino. Secara prinsip hal ini tidak bertentangan dengan prinsip-prinsip MOND namun tidaklah seelegan ide awal MOND yang dimaksudkan sebagai konsep yang sama sekali tidak membutuhkan materi gelap.

Diskusi

Hingga saat ini, data pengamatan mengindikasikan bahwa jika materi gelap memang ada, maka wujudnya adalah partikel nonbaryonik yang eksotik dan berinteraksi dengan “materi normal” melalui gravitasi dan tidak secara elektromagnetik. MACHO dan neutrino boleh jadi adalah materi gelap juga walaupun bukanlah komponen yang paling dominan. Partikel-partikel supersimetrik dengan demikian adalah kandidat terkuat sebagai “materi gelap” dan masih menunggu untuk ditemukan melalui eksperimen-eksperimen fisika dan astronomi. Di satu sisi, bila materi gelap tidak ada dan yang kita butuhkan adalah modifikasi Hukum Newton, maka MOND dapat diuji dengan melakukan serangkaian pengamatan lensa gravitasi dan radiasi latar (CMB atau Cosmic Microwave Background) untuk meneliti efek TeVeS pada pelensaan gravitasi.
Inilah ilmu pengetahuan, dibangun melalui perbedaan pendapat dan kreativitas, namun alamlah yang menjadi hakim.
Tags: , , , , , , , , , , , , , , , , , , , , , , , ,

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Wajah Hartley 2 Dari Jarak 700 km

Kayak ayam goreng…”, begitulah kata–kata yang langsung tercetus dalam benak saat menyaksikan citra demi citra hitam putih yang tersaji di layar. Bukan, ini bukan bagian dari demam Upin–Ipin si kembar penggemar ayam goreng dari tanah seberang yang sedang menyihir dunia anak–anak Indonesia. Melainkan sebentuk kekaguman yang spontan tercetus kala menyaksikan hasil bidikan wahana antariksa Deep Impact yang melintas dekat inti komet 103 P/Hartley 2 dalam misi antariksa nir–awak EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) pada 4 November 2010 lalu.
Wajah inti komet Hartley 2 dari jarak 700 km seperti diabadikan Deep Impact pada 4 November 2010. Nampak bentuk sangat lonjong mengesankan seperti paha ayam dengan dimensi ,25 x 0,4 km, dengan aliran–aliran jet keluar dari permukannya. Kredit foto : NASA
Citra–citra Deep Impact tak hanya mengonfirmasi dimensi dan bentuk inti komet Hartley 2 yang kecil dan sangat lonjong sebagaimana telah diungkap sebelumnya dalam observasi teleskop landas–bumi Spitzer dan teleskop radio Arecibo secara terpisah, namun juga menyingkap sejumlah fakta yang mengubah cara pandang kita akan komet.
Terbang lintas dekat Deep Impact pada inti komet Hartley 2 merupakan kulminasi misi EPOXI yang telah bergulir selama lima tahun lebih sejak 21 Juli 2005 pasca Deep Impact usai menjalankan misi utamanya mengobservasi dinamika komet 9 P/Tempel 1.
Pengendali misi di NASA Jet Propulsion Laboratoy yang dimanajeri Tom Duxbury memerintahkan Deep Impact menjalani serangkaian manuver yang memungkinkannya mendekati target baru dengan karakter orbitnya sangat berbeda. Semula Deep Impact dijadwalkan melintas dekat komet Boethin pada 5 Desember 2008. Namun komet ini demikian redup dan tak pernah teramati lagi sejak 1986 sehingga akurasi orbitnya tidak menjamin keberhasilan misi. Deep Impact lantas diarahkan ke komet Hartley 2. “Komet Hartley 2 sama menariknya dengan komet Boethin karena intinya relatif kecil namun aktif,” demikian Michael A’ Hearn, astronom University of Maryland sekaligus penyelidik utama misi EPOXI menjelaskan. Dalam kata–kata Tom Duxbury, “ketika komet Boethin tak terlacak, kami mengarahkannya ke komet Hartley 2 sebagai cadangan, yang sama menariknya namun membutuhkan waktu dua tahun lebih lama guna mencapainya.
Puncak terbang lintas Deep Impact berlangsung pada 4 November 2010 pukul 21:00 WIB kala ia berhasil mendekati inti komet Hartley 2 pada jarak hanya 700 km sembari melaju dengan kecepatan 44.300 km/jam. Inti komet terlihat sangat lonjong dengan bentuk mirip paha ayam, atau dalam kata–kata astronom Donald Yeomans yang menjadi salah satu anggota tim peneliti, “mirip kacang.” Bentuk inti ini mirip dengan bentuk inti komet 19 P/Borrelly sebagaimana diabadikan wahana antariksa Deep Space 1 pada bulan September 2001, hanya saja inti komet Borrely empat kali lebih besar. Bentuk inti tersebut mengesankan sebagai dua gumpalan material terpisah (biner) yang kemudian bersatu kembali oleh tarikan gravitasi keduanya. Jika hal ini memang benar terjadi, maka bisa disimpulkan dinamika yang terjadi dalam kawasan sumber komet (yakni di sabuk Kuiper–Edgeworth dan awan komet Oort) menyerupai apa yang terjadi di kawasan sabuk Asteroid Utama (seperti diperlihatkan asteroid Hayabusa dan Kleopatra), meski keduanya sangat berbeda sifat.
Diameter inti Hartley 2 (dihitung pada sumbu panjangnya) adalah 2,25 km atau dua kali lipat lebih besar dibanding nilai 1,14 km yang dihasilkan dari observasi teleskop Spitzer pada  bulan Agustus 2008. Dengan demikian inti komet Hartley 2 adalah inti komet terkecil yang pernah dikunjungi wahana antariksa nir–awak, memecahkan rekor sebelumnya yang dicatat wahana antariksa Stardust saat mengunjungi inti komet Wild 2 (diameter 4,0 km) pada bulan Januari 2004 silam. Komet Hartley 2 juga merupakan komet kelima yang telah dikunjungi wahana antariksa yang dirancang khusus untuk terbang lintas, setelah komet Halley, Borrelly, Wild 2 dan Tempel 1.
inti komet Halley dari jarak 500 km seperti diabadikan Giotto pada 1986. Kanan : inti komet Borrellly dari jarak 2.200 km yang diabadikan Deep Space 1 pada 2001. Permukaan Borrelly hampir empat kali lebih aktif dibanding Halley. Aktivitas yang tinggi pun dijumpai pada inti Hartley 2 yang bentuknya hampir sama dengan Borrelly. Kredit foto : Fernandez
Meski kecil, permukaan inti komet Hartley 2 cukup aktif. Aliran–aliran jet pembawa material volatil yang menyusun coma (kepala komet) dan ekor komet diidentifikasi muncul pula dari sisi gelap (bagian inti yang membelakangi Matahari). Ini mencengangkan sebab secara teoritis aliran jet hanya akan muncul di sisi terang sebagai konsekuensi dari pemanasan sinar Matahari pada permukaan inti yang lantas membuat materi volatil tersublimasi menjadi gas. Hal lain yang mengesankan para astronom penelitinya adalah tingkat produksi gas CO2 yang di atas normal. Gas CO2 menjadi komponen utama material volatil yang dilepaskan inti komet Hartley 2, namun apa penyebabnya belum diketahui Aktivitas inti komet Hartley 2 mengesankannya sebagai komet muda yang baru saja hadir di orbitnya dengan hampir 50 % permukaan inti aktif, berbanding terbalik dengan komet Halley (dipersepsikan sebagai komet tua) yang hanya memiliki 10 % permukaan inti aktif seperti diperlihatkan wahana antariksa Giotto saat mendekatinya di tahun 1986. Dalam kata–kata Yeomans, komet Hartley 2 adalah “kecil, namun hiperaktif…”
Belum jelas apakah aktifnya inti komet Hartley 2 juga berhubungan dengan bentuk intinya. Sebagai pembanding, inti komet Borrelly yang bentuknya mirip juga cukup aktif (37 % permukaannya aktif), bertolak belakang dengan inti–inti komet lainnya yang bentuknya berbeda seperti Wild 2 (24 % permukaan aktif) dan Tempel 1 (14 % permukaan aktif). Aktivitas inti berbanding lurus dengan jumlah massa inti yang terlepas ke angkasa setiap kali komet muncul di dekat Matahari. Komet Hartley 2 diestimasikan memiliki massa 300 juta ton sehingga dengan aktivitasnya pada saat ini, komet ini diperkirakan hanya akan bertahan dalam tempo 700 tahun ke depan sebelum kemudian terpecah–belah dalam evolusinya.
Berdasarkan grafik evolusi komet dari Fernadez (2005), dalam 700 tahun ke depan komet Hartley 2 akan bertransformasi dari komet beraktivitas tinggi seperti saat ini menjadi komet beraktivitas rendah (fraksi permukaan inti aktif jauh lebih kecil dari 1 %) dan selanjutnya inaktif sebelum terpecah–belah. Pemecahbelahan inti komet akan menyebabkan komet aktif kembali, namun juga diikuti dengan tahap pemecahbelahan selanjutnya sehingga inti komet bakal hancur lebur menjadi kerikil dan debu berukuran kecil yang kelak menjadi sumber hujan meteor saat bersinggungan dengan orbit planet.

Referensi : Fernandez. 2005. Comets: Nature, Dynamics, Origin and Their Cosmogonical Relevance.
Tags: , , ,

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Penemuan Lubang Hitam Termuda

Sebuah berita mengejutkan muncul malam ini. Para astronom yang melakukan penelitian menggunakan Chandra X-ray Observatory milik NASA berhasil menemukan bukti keberadaan lubang hitam termuda di lingkungan kosmik.
Lubang Hitam Muda
Berapa usianya? Jika selama ini para astronom mengenal usia benda langit dalam usia yang sudah sangat tua, bahkan yang muda pun biasanya beberapa ribu tahun, maka obyek yang satu ini jelas sangat unik.
Lubang hitam yang ditemukan ini baru berumur 30 tahun!.
Apa artinya? Artinya, para astronom berkesempatan untuk megamati tipe lubang hitam yang satu ini bertumbuh dan berkembang dari masa kanak-kanak.
Yang pasti, lubang hitam ini akan memberikan informasi yang dapat membawa para astronom memahami ledakan bintang masif yang biasanya menyisakan lubang hitam atau bintang netron. Selain itu para astronom juga bisa mengetahui jumlah lubang hitam di galaksi Bima  Sakti dan galaksi lainnya.
SN 1979C di galaksi M100. Kredit : X-ray: NASA/CXC/SAO/D.Patnaude et al, Optical: ESO/VLT, Infrared: NASA/JPL/Caltech
Lubang hitam yang diamati oleh Chandra ini berasal dari sisa ledakan bintang supernova SN 1979C yang berada di galaksi M100, sekitar 50 juta tahun cahaya dari Bumi. Data yang dihasilkan oleh satelit Swift (NASA), XMM-Newton (ESA), dan ROSAT  (Jerman) berhasil mengungkap sumber sinar-X yang cerlang dan tidak berubah sepanjang pengamatan yang dilakukan dari tahun 1995 – 2007. Ini mengindikasikan kalau obyek tersebut merupakan lubang hitam yang sedang diberi makan oleh materi yang jatuh ke dalamnya dari puing puing supernova atau dari bintang pasangan.
Jika interpretasi ini benar, maka obyek yang ditemukan tersebut merupakan contoh terdekat dari kelahiran lubang hitam yang bisa diamati.

SN 1979C

SN 1979C, pertama kali ditemukan oleh astronom amatir pada tahun 1979, terbentuk saat bintang dengan massa sekitar 20 massa Matahari mengalami keruntuhan.  Pengamatan sebelumnya juga berhasil menemukan lubang hitam baru pada alam semesta jauh dalam bntuk ledakan sinar gamma / gamma ray burst (GBR).
Akan tetapi, SN 1979C ini berbeda karena ia berada lebih dekat dan berasal dari kelas supernova yang tidak terasosiasi dengan ledakan sinar gamma. Jika mengacu pada teori, sebagian besar lubang hitam di alam semesta terbentuk saat inti bintang mengalami keruntuhan dan tidak menghasilkan ledakan sinar gamma. Dan untuk pertama kalinya, lubang hitam seperti itu ditemukan.
Yang jadi permasalahan adalah, sangat sulit untuk bisa menentukan tipe kelahiran lubang hitam karena dibutuhkan pengamatan sinar-X selama beberapa dekade untuk bisa mendapatkan jawabannya.
Lubang hitam berusia 30 tahun yang tampak oleh Chandra ini memiliki kesesuaian dengan teori. Menurut teori yang disampaikan pada tahun 2005, cahaya optik yang sangat terang pada supernova ini ditenagai oleh jet dari lubang hitam yang tidak dapat menembus selubung hidrogen bintang untuk membentuk ledakan sinar gamma.  dan hasil pengamatan SN 1979C ternyata cocok dengan teori tersebut.
Perdebatan Yang Muncul
Meskipun bukti yang ada mengarahkan obyek ini sebagai lubang hitam yang baru terbentuk di SN 1979C, ada kemungkinan lain yang juga dimunculkan mengenai obyek baru dan masih muda ini.
Bisa jadi obyek tersebut merupakan bintang netron muda yang berputar sangat cepat dan menghasilkan angin yang sangat kuat dan partikel berenergi yang kemudian memancarkan sinar-X.  Jika memang benar demikian, maka obyek di SN 1979C ini akan menjadi contoh paling cerlang sekaligus paling muda dari pulsar angin nebula serta bintang netron termuda yang pernah diketahui.  Saat ini pulsar Crab, yang merupakan pulsar angin nebula yang sangat cerlang pun usianya mencapai 950 tahun.
Tags: , , , , ,

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Misteri di Kedalaman Magnetar

Hasil pengamatan Chandra, Swift, dan Rossi X-ray observatories, Fermi Gamma-ray Space telescope milik NASA dan XMM Newton milik ESA berhasil memperlihatkan keberadaan bintang netron yang berotasi lambat dan memiliki medan magnet permukaan yang umum melepaskan ledakan sinar-X dan sinar gamma.
Ilustrasi Bintang netron SGR 0418+5729. Kredit : CXC/M. Weiss
Penemuan ini sekaligus mengindikasikan keberadaan medan magnet internal yang lebih intens dibanding medan magnet di permukaan. Jika demikian hal ini akan memberi implikasi pada evolusi  magnet yang sangat kuat di kosmos.

Medan Magnet Yang Berbeda

Bintang netron SGR 0418+5729 ditemukan oleh Fermi Gamma-ray Space Telescope pada tanggal 5 Juni 2009 saat ia mendeteksi keberadaan ledakan sinar gamma dari obyek tersebut. Observasi lanjutan kemudian dilakukan oleh Rossi X-Ray Timing Explorer (RXTE) selama 100 hari untuk melihat aktivitas bintang netron tersebut. Selain menunjukkan ledakan sinar-X secara sporadik, Rossi X-ray juga melihat pancaran sinar X secara terus menerus dengan denyutan yang teratur dan mengindikasikan kalau bintang ini memiliki  periode rotasi 9,1 detik. Sifat yang dimiliki bintang netron  SGR 0418+5729 memiliki kemiripan dengan kelas bintang netron yang dikenal sebagai magnetar. Magnetar merupakan bintang netron yang memiliki medan magnet ekstrim antara 20 – 1000 kali di atas rata-rata pulsa radio galaktik.
Saat bintang netron berotasi, radiasi dari gelombang elektromagnet frekuensi rendah — atau angin partikel energi tinggi — akan membawa energi menjauh dari bintang, mengakibatkan terjadinya perlambatan dalam laju rotasi bintang.
Dalam pantauan yang dilakukan oleh Chandra dan XMM-Newton sepanjang 490 hari menunjukkan tidak terdeteksinya perlambatan dalam laju rotasi pada SGR 0418. Inilah yang menjadikan bintang netron ini berbeda dari magnetar.
Tidak adanya perlambatan rotasi menyebabkan radiasi gelombang frekuensi rendah menjadi lemah, sehingga medan magnet permukaan akan jauh lebih lemah dari ukuran normal. Tapi pertanyaan lain yang muncul? Darimanakah bintang ini mendapatkan energinya untuk melepaskan ledakan yang demikian kuat disertai pancaran sinar-X terus menerus?
Jawaban yang berlaku umum untuk menjawab asal energi yang memberi tenaga pada panacaran sinar-X dan sinar gamma untuk kasus magnetar,  mengarah pada medan magnet internal yang mengalami putaran dan penguatan dalam interior si bintang netron yang sedang bergolak.
Berdasarkan teori, jika medan internal menjadi lebih kuat lebih dari 10 kali dibanding medan permukaan, peluruhan medan akan memicu terjadinya ledakan sinar-X yang terpancar terus menerus sebagai akibat pemanasan kerak bintang netron atau percepatan partikel.
Nah, pertanyaan lain yang muncul adalah sebesar apakah ketidakseimbangan bisa dipertahankan antara medan permukaan dan medan interior? Disinilah arti penting SGR 0418, karena ia akan menjadi lahan uji bagi teori yang ada. Pengamatan yang dilakukan saat ini sudah menunjukkan ketidakseimbangan antara 50 dan 100. Jika pengamatan lanjutan oleh Chandra menunjukkan medan magnet permukaan di bawah batas normal, maka tampaknya perlu dilakukan kajian lebih mendalam untuk menjelaskan kejadian penuh teka teki tersebut.
Sumber : Chandra/NASA

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Pemetaan Materi Gelap & Pembentukan Gugus Galaksi

Dengan menggunakan Teleskop Hubble, para astronom mengambil keuntungan dari kaca pembesar kosmik untuk membuat peta detil dari materi gelap di alam semesta.
Materi Gelap vs Energi Gelap
Dark matter atau materi gelap merupakan materi yang tidak terlihat yang mengisi sebagian besar massa alam semesta. Pengamatan materi gelap yang dilakukan ini diharapkan dapat membawa perspektif baru mengenai peran energi gelap dalam tahun-tahun awal pembentukan alam semesta.
Hasil yang didapat menunjukkan kalau gugus galaksi bisa jadi terbentuk lebih awal dari yang diperkirakan, sebelum dorongan energi gelap menghambat pertumbuhan mereka. Sebuah peristiwa yang misterius di ruang angkasa, ketika energi gelap melawan gaya tarik gravitasi dari materi gelap. Energi gelap mendorong galaksi hingga terpisah satu sama lainnya dengan meregangkan ruang di antara mereka sehingga menekan pembentukan struktur raksasa yang dikenal sebagai gugus galaksi.
Abell 1689 yang dilihat Hubble. Kredit : NASA, ESA, and D. Coe (NASA JPL/Caltech and STScI)
Salah satu cara yang digunakan astronom untuk menelusuri perang gaya tarik purba ini adalah melalui pemetaan distribusi materi gelap di dalam gugus.
Untuk itu tim peneliti yang dipimpin oleh Dan Coe dari NASA JPL melakukan pengamatan dengan menggunakan Advanced Camera for Surveys pada Hubble untuk melakukan pemetaan materi tak terlihat dalam gugus galaksi masif Abell 1689, yang berada pada jarak 2,2 milyar tahun cahaya.
Gravitasi gugus tersebut sebagian besar berasal dari materi gelap yang bertindak sebagai kaca pembesar kosmik, lentur dan melakukan penguatan cahaya dari galaksi jauh yang ada di belakangnya. Efek yang dikenal dengan nama lensa gravitasi ini menghasilkan beberapa citra melengkung yang diperbesar dari galaksi-galaksi tersebut layaknya tampilan cermin funhouse.
Dengan mempelajari citra yang terdistorsi, astronom bisa menghitung jumlah materi gelap yang ada di dalam gugus. Jika gravitasi gugus hanya berasal dari galaksi tampak, distorsi yang terjadi pada lensa akan jauh lebih emah.
Berdasarkan peta massa resolusi tinggi inlah, Coe dan rekan-rekannya bisa melakukan konfirmasi atas hasil yang sudah ada sebelumnya dan menunjukkan kalau inti Abell 1689 memiliki kerapatan lebih tinggi dalam hal materi gelap untuk gugus seukuran dirinya, berdasarkan simulasi komputasi pertumbuhan struktur.  Penemuan ini cukup mengejutkan karena dorongan energi gelap di awal sejarah pembentukan alam semesta seharusnya menghambat pertumbuhan gugus galaksi.
Karena itulah, gugus galaksi harus sudah mulai terbentuk milyaran tahun lebih awal agar dapat  mencapai jumlah yang kita ketahui saat ini. Di masa awal, alam semesta jauh lebih kecil dan lebih padat dengan materi gelap. Abell 1689 tampaknya telah cukup terisi saat lahir dengan materi berkerapatan tinggi yang ada disekelilingnya pada masa alam semesta dini. Gugus ini tetap membawa materi-materi itu sampai pada kehidupan dewasanya yang diamati saat ini.

Memetakan Yang Tak Mungkin

Abell 1689 merupakan gugus lensa gravitasi paling kuat yang pernah diamati. Observasi yang dilakukan Coe yang kemudian digabungkan dengan penelitian sebelumnya menghasilkan 135 citra yang berbeda dari 42 galaksi latar belakang,
Hasilnya? Lensa citra yang penuh teka teki. dari sinilah para peneliti kemudian mulai mengatur massa Abell 1689 dengan lensa galaksi latar belakang pada posisi yang diamati seperti menyusun sebuah puzzle. Dari sinilah Coe mendapatkan informasi untuk menghasilkan peta resolusi tinggi dari distribusi materi gelap dalam gugus.
Di masa depan, astronom merencanakan untuk memperlajari lebih banyak gugus galaksi untuk mendapatkan informasi yang lebih mendalam akan pengaruh energi gelap. Salah satu program yang akan dilakukan Hubble adalah untuk menganalisa materi gelap pada gugus galaksi raksasa dalam project Cluster Lensing and Supernova survey with Hubble (CLASH).
Survei ini akan dilakukan pada 25 gugus selama 1 bulan sepanjang 3 tahun ke depan. Gugus CLASH dipiliha karena mereka memancarkan sinar-X yang kuat sehingga bisa mengindikasikan keberadaan gas panas dalam jumlah besar di dalam gugus. Kelimpahan gas panas menunjukkan juga kalau gugus tersebut sangat masif.
Dengan melakukan pengamatan pada gugus galaksi, para astronom akan dapat memetakan distribusi materi gelap dan mendapatkan bukti dari pembentukan gugus galaksi awal disertai informasi dari energi gelap di masa awal pembentukan gugus tersebut.\
Sumber : NASA

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Struktur di Bima Sakti Yang Dilihat Fermi

Alam semesta memang demikian luasnya dan meskipun satu per satu misteri berhasil diungkapkan manusia, nun di sana masih ada misteri lain yang menanti. Kali ini teleskop Sinar-X Fermi milik NASA berhasil melihat keberadaan struktur yang tidak kasat mata di pusat Bima Sakti.  Struktur tersebut terentang sepanjang 50000 tahun cahaya dan diyakini merupakan puing sisa letusan lubang hitam berukuran super yang ada di pusat galaksi.
Pandangan Mata Fermi ke Pusat Galaksi

Gelembung yang tampak oleh Fermi merentang sepanjang 25000 tahun cahaya ke utara dan selatan. Kredit : Goddard Space Flight Center NASA
Dalam pengamatannya, Teleskop landas angkasa sinar-X Fermi melihat dua gelembung pancaran sinar-X yang merentang 25000 tahun cahaya ke utara dan selatan dari pusat galaksi. Struktur tersebut tampak merentang lebih dari setengah langit tampak dari rasi Virgo sampai rasi Grus, dan diyakini sudah berusia jutaan tahun.
Doug Finkbeiner dari Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., bersama rekan-rekannya berhasil melihat gelembung pancaran cahaya tersebut dalam data yang diproses dari  Large Area Telescope (LAT) Fermi.
Saat para astronom lain mempelajari sinar gamma mereka tidak mendeteksi gelembung tersebut dikarenakan keberadaan kabut sinar gamma yang tampak di seluruh angkasa. Kabut ini merupakan partikel yang bergerak dengan kecepatan hampir mendekati kecepatan cahaya yang kemudian  berinteraksi dengan cahaya dan gas antar bintang di Bima Sakti.
Dalam melakukan pengamatan dengan menggunakan LAT, tim LAT dari waktu ke waktu terus menyempurnakan model yang bisa mengungkapkan sumber sinar gamma baru yang selama ini dikaburkan oleh emisi diffuse (emisi sebaran). Tim ini menggunakan berbagai perkiraan terkait dengan kabut sinar gamma untuk kemudian dilakukan isolasi terhadap kabut tersebut dari data LAT sehingga gelembung raksasa bisa tampak.
Petunjuk keberadaan struktur tersebut muncul pada data pengamatan sinar X sebelumnya oleh satelit Roentgen milik Jerman. Data tersebut mengindikasikan keberadaan tepi gelembung yang berada dekat pusat galaksi atau pada orientasi yang sama dengan Bima Sakti.  Setelah itu, Wilkinson Microwave Anisotropy Probe (WMAP) milik NASA juga mendeteksi ekses dari sinyal radio pada posisi gelembung sinar gamma tersebut.
Setelah itu barulah dilakukan pengamatan dan pengumpulan data dari hasil sapuan seluruh langit yang dilakukan Fermi setiap 3 jam. Dan keberadaan struktur di Bima Sakti ini juga merupakan hasil  pengumpulan data selama 2 tahun.

Asal Usul Struktur

Data yang dihasilkan Fermi menunjukkan keberadaan struktur yang merentang sepanjang 50000 tahun cahaya dari konstelasi Virgo sampai konstelasi Grus. kredit :NASA/DOE/Fermi LAT/D. Finkbeiner et al.
Dari hasil pengamatan Fermi, para peneliti kemudian melakukan analisa untuk bisa memahami bagaimana struktur yang belum pernah terlihat sebelumnya itu bisa terbentuk.  Emisi dari gelembung yang dilihat itu jauh lebih kuat dibanding kabut sinar gamma yang terlihat di area lain di Bima Sakti. Gelembung ini juga tampak memiliki tepi yang bisa terdefinisi dengan baik atau bisa terlihat bentuk tepinya. Bentuk struktur yang tampak menunjukkan kalau ia terbentuk dari sejumlah besar energi yang terlepas dengan sangat cepat dari sumber yang masih misterius.
salah satu kemungkinan yang diajukan sebagai asal usul struktur tersebut adalah jet atau letusan tiba-tiba dan dasyat dari lubang hitam di pusat galaksi.
Di galaksi lain, diketahui jet partikel yang sangat cepat itu memang ada dan ditenagai oleh materi yang runtuh ke pusat lubang hitam. Akan tetapi, sampai saat ini belum ada bukti yang mengindikasikan keberadaan jet tersebut di lubang hitam yang ada di pusat Bima Sakti. Diperkirakan jet tersebut terjadi di masa lalu.
Kemungkinan lainnya, gelembung tersebut juga bisa terbentuk dari gas yang mengalir keluar dari ledakan saat pembentukan bintang, dalam hal ini peristiwa yang membentuk sebagian gugus  bintang masif di pusat Bima Sakti beberapa juta tahun lalu.  Di galaksi lain, ledakan bintang tersebut bisa memicu terjadinya aliran gas raksasa yang mengalir keluar.
Sumber : NASA

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Filamen Bintik Matahari 1123 Mengarah ke Bumi

Tanggal 11 november 2010, bintik Matahari aktif 1123 menghasilkan ledakan flare Matahari kelas C4, dan melepaskan filamen materi yang mengarah ke Bumi.
Flare Matahari kelas C4 yang dipotret SOHO. kredit : SOHO
Citra yang dihasilkan Solar and Heliospheric Observatory (SOHO) dan wahana ruang angkasan kembar STEREO milik NASA menunjukkan lontaran massa korona yang lemah muncul dari lokasi ledakan dan mengarah ke selatan menuju garis Bumi-Matahari.  Awan lontaran materi ini akan mencapai medan magnet Bumi sekitar tanggal 14 – 15 November 2010.
Apakah berbahaya? lagi-lagi mungkin itu pertanyaan yang muncul. Dalam flare Matahari, ledakan kelas atau skala C ini tergolong kecil apalagi jika dibandingkan dengan flare skala X atau M yang dikenal sebagai badai Matahari.
Saat lontaran massa korona mencapai Bumi, ia akan berinteraksi dengan medan magnet di Bumi dan berpotensi untuk menimbulkan badai geomagnetik. Pada kejadian tersebut, aliran partikel Matahari akan mengalir turun sesuai dengan garis-garis medan magnetik Bumi ke kutub-kutub Bumi dan bertabrakan dengan atom nitrogen dan oksigen di atmosfer. Untuk kejadian flare Matahari kelas C4 dari bintik Matahari 1123 ini, kemungkinan terjadinya badai geomagnetik mencapai 50%.
Akibatnya?
Akan muncul aurora atau lapisan cahaya bak tirai yang sangat spektakuler. Inilah yang diharapkan dapat dilihat oleh masyarakat Bumi di kutub dan area lintang tinggi. Tidak akan ada efek signifikan bagi Bumi.
Jadi tidak usah kuatir apalagi panik, dan jika anda berada di lintang tinggi, selamat menikmati aurora. Dan bagi yang berada di ekuator seperti di Indonesia, selamat berburu meteor Leonid!
Tags: , , , ,

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS