ORION, PEMBURU PERKASA DI LANGIT MALAM

Jika kita tengok langit malam pada bulan Januari-Februari akan tampak sebuah pola rasi bintang yang jelas: tiga buah bintang cukup terang, terletak sejajar, ditemani bintang-bintang terang di atas-bawah, kanan-kirinya. Orang pun langsung mengenali pola ini sebagai Orion, salah satu rasi bintang yang populer. Begitu populernya ia hingga dikenali oleh berbagai peradaban kuno manusia. Berbagai cerita pun berkembang tentang pemburu perkasa yang satu ini.
Uranometria dari Johann Bayer. kredit :US Naval Observatory Library
Dikisahkan dalam mitologi Yunani bahwa Orion jatuh cinta kepada Merope dan ingin menikahinya. Namun ayah Merope, Raja Oenopion tidak begitu menyukai Orion untuk menikahi anaknya. Orion berusaha memiliki Merope dengan berbagai cara, termasuk dengan kekerasan. Setelah berkonsultasi dengan Dyonisius, Oenopion menyihir Orion tidur ke dalam tidurnya yang panjang. Tidak hanya itu, ia pun membutakan mata Orion.
Setelah bangun dari tidurnya yang panjang, Orion mencari bantuan pada seorang peramal agar dapat melihat kembali. Peramal itu kemudian mengatakan pada Orion bahwa ia harus melakukan perjalanan ke timur dan membiarkan matanya disinari sinar matahari agar penglihatannya kembali. Orion pun melakukannya. Kemudian ia hidup di Kreta sebagai seorang pemburu nan gagah, dimana Dewi Artemis jatuh cinta kepadanya namun akhirnya membunuhnya. Kita pun sekarang dapat melihatnya sebagai seorang pemburu yang mendiami langit utara dengan ditemani dua anjing setianya, Canis Major dan Canis Minor.
Mudah sekali bagi kita untuk menemukan rasi Orion dengan mata telanjang. Untuk melihatnya sebagai seorang pemburu, langsung saja kita kembangkan imajinasi kita. Tiga bintang sejajar yang cukup terang; Alnitak (zeta Orionid), Alnilam (epsilon Orionid), Mintaka (delta Orionid) membentuk sabuk sang pemburu. Bergeser ke sebelah selatannya, tiga buah bintang yang lebih redup menandakan pedangnya. Di ujung sebelah kiri, bintang Betelgeuse (alpha Orionids) digambarkan sebagai bahu Orion. Di bawahnya secara diagonal terdapat bintang Rigel (Beta Orionids) yang membentuk kaki Orion.
Sebetulnya terang bintang Rigel melebihi terang bintang Betelegeuse. Rigel adalah bintang raksasa biru-putih bermagnitudo 0.08 sedangkan Betelgeuse bintang variable raksasa merah yang magnitudonya bervariasi antara 0.14 – 1.3. Rigel adalah bintang ke 6 paling terang di langit dan paling terang di rasi Orion. Betelegeuse termasuk ke dalam 20 bintang paling terang di langit.
Dalam rasi Orion terdapat lebih banyak bintang lagi selain yang telah disebutkan di atas. Beberapa di antaranya ada Bellatrix, Nair al Saif, dll. Bintang-bintang dalam rasi Orion ada yang berupa bintang ganda. Sebetulnya Rigel adalah salah satu contoh bintang ganda dalam rasi Orion. Namun bintang pendamping Rigel, mempunyai magnitudo 7 sehingga sangat redup cahayanya. Dengan menggunakan teleskop kecil masih susah untuk memisahkan Rigel dari bintang pendampingnya.
Orion juga kaya akan nebula, di antaranya adalah M42, M43, M78. Nebula yang menjadi favorit para astronom adalah M42, yang bersama-sama dengan dua bintang lainnya membentuk pedang Orion. Dengan magnitudo 4.0, semula para astronom mengira M42 sebuah bintang karena dengan mata telanjang M42 memang tampak di langit seperti sebuah bintang. Namun pada tahun 1618 astronom Rennus Cysatus menemukan bahwa M42 sebenarnya adalah sebuah nebula besar.
Tidak seperti nebula lainnya, M42 tidak hanya merefleksikan cahaya tetapi juga mengemisi cahaya. Telah lama para astronom mempelajari nebula berjarak 1500 tahun cahaya dari bumi ini dengan bantuan teleskop Hubble. Mereka memperkirakan bahwa di tengah nebula ini merupakan nursery bagi sekitar 700 bintang muda.
Yang tidak kalah terkenal dari rasi Orion adalah Orionid Meteor Shower yang biasanya terjadi pada 15 – 29 Oktober. Biasanya hujan meteor orion ini mencapai puncaknya pada tanggal 21. Sekitar 20 meteor per jamnya dapat terlihat. Tetapi ini dapat bervariasi dari 7 sampai 35 meteor per jam.
Tampaknya hujan meteor Orionid sudah mengundang perhatian sejak lama. Tercatat bahwa astronom Amerika, Edward Herrick, memperhatikan hujan meteor ini pertama kali pada tahun 1839. Pada 1864 astronom berkebangsaan Inggris, Alexander Herschel, melakukan observasi yang detil untuk pertama kalinya. Pada akhir abad 19 hujan meteor ini adalah salah satu hujan meteor yang paling banyak diobservasi.
Tentunya setelah membaca ini anda dapat menceritakan pada teman anda kisah tragis di balik rasi Orion, bukan? Atau anda tuliskan dalam agenda tahunan anda berakhir pekan di kawasan pegunungan untuk memburu hujan meteor Orionid bulan Oktober nanti. Selamat memburu sang pemburu.

Tags: 

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

APA ITU PLANET?

Saat sistem ekstrasolar belum ditemukan, perbedaan antara planet dan bintang dapat didefinisikan dengan jelas. Contohnya antara Jupiter dan bintang terkecil (75 kali massa Jupiter)  keduanya dapat langsung dibedakan.
Montase Tata Surya. Kredit : NASA
Tahun 1995, planet pertama di bintang lain ditemukan dan semenjak itu sudah ada 495 planet di bintang lain yang ditemukan dengan massa 0.006 – 21 Massa Jupiter. Awalnya diperkirakan obyek-obyek tersebut merupakan bintang yang kecil sebagai bagian dari sistem bintang ganda, namun karakternya yang berbeda menunjukkan kalau obyek tersebut bukanlah bintang.
Pada tahun 2003, sebuah obyek mirip Pluto ditemukan di Tata Surya sekaligus menjadi pbyek paling jauh di Tata Surya. Sedna, benda yang berada di sabuk kuiper ini kemudia membawa para ahli untuk kembali mempertanyakan definisi planet? dan apakah Pluto itu planet atau bukan. Di tahun 2005, penemuan Eris memicu kembali perdebatan tentang definisi planet di kalangan astronom, sekaligus mengubah sejarah pendefinisian planet di Tata Surya maupun di bintang-bintang lainnya.
Dalam menentukan definisi planet, ada 3 area yang ditinjau yakni : Karakteristik fisik atau ukuran, Orbit, dan asal usul pembentukan.
Planet
Apa itu planet? berdasarkan kamus,  planet adalah obyek langit yang bersinar karena memantulkan cahaya dari bintang dan bergerak mengelilingi bintang. Bagi masyarakat awam, planet adalah anggota tata surya yang bergerak mengitari matahari.
Bagi para pengamat langit, planet merupakan obyek langit yang tidak berkelap kelip seperti bintang karena planet tidak dapat menghasilkan cahaya.  Namun bagi para peneliti, definisi planet tidak semudah itu. Hasil pengamatan selama bertahun-tahun yang disertai berbagai teori memberikan berbagai definisi tentang planet. Sebagian kutipan definisi planet tersebut sebagai berikut :
Geoffry W Marcy:
Planet adalah obyek yang memiliki massa antara yang dipunyai Pluto dan ambang pembakaran deutrium dan yang terbentuk dalam orbit di sekeliling obyek yang dapat membangkitkan energi melalui reaksi nuklir.

G H A Cole:
planet adalah sebuah benda dingin

Gibor Basri:
planet adalah non fusor yang sferis yang lahir dalam orbit disekeliling suatu fusor.

Alan Stern & Hal Levinson:
planet adalah benda keplanetan yang terikat dalam orbit sekeliling sistem multi bintang dan bintang tunggal.

Mike Brown
planet adalah obyek dalam tata surya yang lebih masif dari total massa obyek lainnya dalam orbit yang berdekatan atau sama.
Planet sendiri berasal dari kata Yunani “wanderer” atau “pengelana” yang merupakan obyek langit dingin, dan tidak menghasilkan energi. Planet hanya dapat memantulkan cahaya bergantung pada besar albedonya.  Sebagai benda dingin, planet tidak memiliki sumber energi panas yang signifikan didalamnya dan tidak dipengaruhi oleh temperatur. Bila pada katai coklat dan bintang proses termonuklir menyuplai energi panas internal, pada planet energi panas diperoleh dari luar dirinya misalnya dari bintang induk. Selain itu kondisi interior planet, tidak cukup memadai untuk menyebabkan ionisasi atom-atom pembentuknya.
Problema Ukuran Sebuah Planet
Keberadaan Pluto sebagai planet semakin hari semakin terancam, bahkan seharusnya sejak awal Pluto tidak ditempatkan sebagai planet. Ukuran Pluto yang kecil bahkan kurang dari setengah kali ukuran planet lainnya, dengan orbit yang berbeda dari planet lainnya menyebabkan sebagian astronom menempatkannya sebagai bagian dari Sabuk Kuipert. Sabuk Kuipert diketahui keberadaannya pada tahun 1982 dengan anggota batu-batuan yang beku.
Menurut Michael A’Hearn, astronom dari University of Maryland dan mantan presiden divisi IAU’s Planetary Systems Sciences, “seandainya saja saat Pluto ditemukan (thn 1930), kita telah mengetahui adanya sabuk Kuipert, maka ia akan menjadi obyek raksasa Sabuk Kuipert”.
Pada awal tahun 1999, terjadi perdebatan di kalangan IAU saat Pluto diberikan dua status sebagai planet dan sebagai obyek trans-neptunian, mengacu pada lokasinya yang jauh. Namun status ini kemudian dibatalkan dan sampai saat ini kita masih mengenal Pluto sebagai salah satu planet dalam tata surya.
Dengan menggunakan perhitungan batas massa dari G.H.A. Cole berdasarkan komposisi pembentukannya, maka Pluto masih dapat dikategorikan sebagai planet. Demikian juga halnya dengan Varuna, Quouar, Ceres dan Sedna. Namun bagi mereka yang menganggap Pluto bukanlah planet, maka Sedna akan tetap dikenal sebagai planetoid.
Sistem Tata Surya berdasarkan klasifikasi baru. Kredit : IAU
Resolusi IAU 2006
Tahun 2005, Mike Brown dan timnya menemukan sebuah obyek yang lebih besar dari Pluto di area Sabuk Kuiper atau juga dikenal sebagai obyek trans-Neptunian. Keberadaan benda kecil yang awalnya dikenal sebagai 2003 UB313 menjadi pemicu perdebatan definisi planet. Pertanyaanya, dengan ukuran lebih besar dari Pluto, akankah 2003 UB313 atau yang sempat dinamai Xena ini akan menjadi planet ke-10?
Jika obyek yang kemudian resmi dinamai Eris ini menjadi planet ke-10, tentu akan ada sederetan benda-benda berukuran serupa di Sabuk Kuiper yang juga harus diperhitungkan sebagai planet. Maka, pada tahun 2006, dalam General Assembly IAU yang ke-26 di Praha, ditetapkanlah resolusi baru mengenai definisi planet :
  1. Memiliki orbit yang mengitari Matahari / bintang
  2. Memiliki massa yang besar agar gravitasinya cukup besar untuk mempertahankan bentuk bola
  3. Mampu membersihkan area sekeliling orbitnya dari benda-benda kecil.
Terkait syarat ke-3, menurut Hal Levison, ada dua cara planet membersihkan populasi benda kecil disekelilingnya :
  1. Planet bisa mengakresi benda-benda kecil tersebut
  2. Planet tersebut secara gravitasional melontarkan benda-benda kecil disekelilingnya keluar dari Tata Surya.
Resolusi IAU tersebut menghasilkan 3 kategori utama dalam Tata Surya :
  1. Planet : 8 obyek dari Merkurius, Venus, Bumi, Mars, Jupiter, Saturnus, Uranus,  Neptunus
  2. Planet Katai : Ceres, Pluto, Haumea, Makemake, Eris dan obyek bundar lainnya yang belum menyapu bersih lingkungan disekitar orbitnya, dan bukan merupakan satelit
  3. Benda Kecil di Tata Surya : semua obyek lain yang mengorbit Matahari.
Pada tahun 2008, IAU menetapkan nama Plutoid bagi obyek planet kerdil yang berada di luar orbit Neptunus atau yang juga dikenal sebagai trans Neptunian object. Plutoid merupakan benda langit yang mengorbit Matahari pada jarak lebih besar dari jarak Neptunus. Mereka memiliki massa yang cukup agar gaya gravitasi dapat mempertahankan bentuk bola. Kriteria lainnya adalah area di sekeliling orbit plutoid masih belum bersih dari obyek-obyek lainnya.

Tags: ,

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

ENERGI GELAP (DARK ENERGY) DALAM MODEL STANDAR KOSMOLOGI BARU

Kosmologi memasuki babak baru. Berbagai temuan observasi memberikan kita gambaran terkini tentang alam semesta, yang agak berbeda dengan alam semesta sebagaimana yang digambarkan oleh model standar kosmologi.
Dengan perkembangan terbaru dari berbagai hasil pengamatan ini, kita memiliki model kosmologi baru yang merupakan model standar kosmologi (hot big bang) yang diperluas.
Model standar kosmologi baru itu memiliki karakteristik:
  • Alam semesta dengan geometri datar (flat) dengan parameter densitas Ω = 1.0023 ± 0.0055 (dari data satelit Wilkinson Microwave Anisotropy Probe — WMAP), dan sedang dalam keadaan berekspansi dipercepat
  • Alam semesta mengalami proses inflasi (ekspansi yang bersifat eksponensial) dalam waktu amat singkat, pada saat usia semesta dini
  • Inhomogenitas densitas yang menjadi cikal bakal struktur dalam alam semesta, berasal dari fluktuasi kuantum yang terbawa ke skala makro selama masa inflasi
  • Komposisi alam semesta terdiri dari (WMAP Jan 2010): (72.8 ± 0.5) % energi gelap (dark energy), (22.7 ± 1.4) % materi gelap nonbaryonik (nonbaryonic dark matter), dan (4.56 ± 0.16) % baryon
Yang dimaksud dengan energi gelap adalah sesuatu yang menyebabkan alam semesta kita berekspansi dipercepat, meski jumlah total materi (baryon dan materi gelap) tidak memungkinkan hal itu terjadi. Keberadaan energi gelap yang menjadi komposisi utama alam semesta, merupakan salah satu penemuan terbesar dalam kosmologi. Energi gelap ini mendominasi alam semesta kita saat ini, dan menyebabkan alam semesta kita saat ini berada dalam fase ekspansi yang dipercepat.
Prediksi masa depan alam semesta. kredit : harvard.edu
Energi gelap ini juga mengubah pemahaman kita tentang nasib alam semesta ke depan.  Dalam Model Standar Kosmologi, nasib alam semesta ditentukan oleh geometrinya. Jika geometri alam semesta adalah geometri sferis (dengan parameter densitas Ω > 1), alam semesta akan terus mengembang sampai suatu saat tertentu, kemudian berhenti mengembang, dan mulai runtuh. Jika alam semesta memiliki geometri datar (dengan parameter densitas Ω = 1), alam semesta akan mengembang dan terus mengembang dengan kecepatan semakin mendekati nol. Dan jika alam semesta memiliki geometri hiperbola (dengan parameter densitas Ω < 1), maka alam semesta akan terus mengembang dengan kecepatan pengembangan semakin mendekati suatu kecepatan tertentu yang bukan nol. Ketiga kemungkinan ujung alam semesta memiliki kesamaan, bahwa alam semesta mengembang dengan kecepatan pengembangan yang semakin kecil.
Namun penemuan keberadaan energi gelap mengubah semuanya. Dalam alam semesta dengan energi gelap, hubungan antara geometri alam semesta dan nasib ke depan alam semesta itu menjadi runtuh. Meski alam semesta kita saat ini memiliki geometri datar (flat), tapi masih terbuka kemungkinan bahwa nasib alam semesta ke depan akan terus mengembang (seperti alam semesta terbuka pada model standar kosmologi), atau akan terus mengembang dengan kecepatan semakin mendekati nol (seperti alam semesta datar pada model standar kosmologi), atau bahkan akan runtuh kembali (seperti alam semesta tertutup pada model standar kosmologi). Akhir yang seperti mana yang akan dialami alam semesta kita, bergantung pada sifat dari energi gelap itu sendiri. Dan ini membuat penelitian tentang energi gelap menjadi topik yang sangat menarik dalam kosmologi.

Indikasi Keberadaan Energi Gelap

Keberadaan energi gelap dideteksi dari pengamatan supernova pada redshift (z) tinggi, dan dari pengamatan radiasi latar belakang (Cosmic Microwave Background – CMB).

Supernova jauh yang dilihat Hubble. Kredit : NASA / Hubble
Dari pengamatan supernova pada redshift tinggi diketahui bahwa alam semesta kita saat ini sedang dalam fase ekspansi yang dipercepat. Supernova-supernova yang berada pada z ≈ 0.5 diamati memiliki magnitud yang lebih rendah dari magnitud seharusnya (jika berada dalam alam semesta seperti yang digambarkan dalam alam semesta dengan geometri datar oleh model standar). Pelemahan cahaya supernova ini paling mungkin dijelaskan jika alam semesta saat ini sedang mengalami ekspansi yang dipercepat. Kesimpulan ini pertama kali didapat oleh dua grup independent, Supernova Cosmology Group dan High-z Supernova Team. Kedua tim ini menggunakan teknik analisis yang berbeda dan sampel supernova (dengan redshift tinggi) yang berbeda. Namun mereka memperoleh kesimpulan yang sama.
Interpretasi bahwa pelemahan magnitud yang dialami supernova dengan z ≈ 0.5 ini disebabkan oleh energi gelap, bukanlah satu-satunya. Ada penjelasan alternatif yang mencoba menjelaskan efek pelemahan magnitude itu karena materi intergalaktik. Tapi bukti yang menguatkan teori energi gelap dan membantah penjelasan dengan materi intergalaktik didapat dengan ditemukannya supernova yang paling jauh (sampai saat ini), SN 1997ff, dengan z = 1.755. Supernova ini diamati memiliki magnitud lebih terang dari seharusnya, yang menunjukkan bahwa ia terjadi saat alam semesta masih mengalami ekspansi yang diperlambat. Jika memang benar ada materi intergalaktik yang menyebabkan pelemahan cahaya, harusnya SN 1997ff akan jauh lebih redup dari seharusnya, bukan malahan lebih terang.
Selain dari supernova, bukti lain yang mendukung keberadaan energi gelap berasal dari pengamatan CMB. Pengamatan CMB menggunakan WMAP memberikan data bahwa parameter densitas alam semesta Ω = 1.0023 ± 0.0055. Padahal dari pengamatan yang sama, diketahui bahwa seluruh materi (baryon dan materi gelap) dalam alam semesta hanya memberikan kontribusi pada Ω yang hanya sekitar sepertiga dari nilai Ω yang diamati. Karena itu, haruslah ada komponen lain dalam alam semesta yang mengisi kekurangan parameter densitas yang diberikan oleh materi (baryon dan materi gelap). Dengan kontribusi dari materi ditambah dengan energi gelap, maka alam semesta kita akan memiliki Ω sebagaimana yang didapat dari pengamatan CMB tersebut.
Diagram perubahan laju pengembangan alam semesta sejak 15 milyar tahun lalu. Kredit : NASA/STScI/Ann Feild
Keberadaan energi gelap juga bisa dideteksi lewat pengamatan lain (selain pengamatan supernova) yang sifatnya independent. Misalnya lewat pengamatan struktur alam semesta skala besar (Large Scale Structure – LSS) yang dikombinasikan dengan pengukuran fluktuasi angular size karakteristik pada CMB. Cara ini merupakan cara pengamatan bersifat tidak langsung. Ada satu lagi metode independent untuk mendeteksi energi gelap, yaitu lewat pengamatan efek integrated Sachs-Wolfe (ISW). ISW ini sendiri adalah pergeseran merah pada foton CMB yang disebabkan oleh gravitasi, yang terjadi mulai saat alam semesta mulai menjadi transparan.
Energi gelap tidak dari awal mendominasi alam semesta, dan menyebabkan ekspansi dipercepat. Karena jika dari awal alam semesta kita sudah mengalami ekspansi dipercepat, maka struktur dalam alam semesta yang kita amati saat ini, tidak akan mungkin terbentuk. Ditambah lagi, pola variasi CMB dan kelimpahan unsur hasil big bang nucleosynthesis akan berbeda dengan yang kita amati sekarang. Energi gelap baru mendominasi dan menyebabkan ekspansi dipercepat pada alam semesta, semenjak suatu epoch tertentu. Kapan terjadinya transisi ini bisa dirunut lewat pengamatan supernova.
Riess dan rekan-rekan melaporkan hasil pengolahan data sampel 16 buah supernova tipe Ia temuan baru yang diamati dengan HST (Hubble Space Telescope). Dalam sampel, termasuk 6 dari 7 supernova terjauh yang kita ketahui, seluruhnya memiliki z > 1.25. Riess juga berhasil menghitung epoch dimana era ekspansi diperlambat (sebagaimana yang digambarkan oleh model standar) berakhir, dan energi gelap mulai mengambil peran sentral. Semenjak saat transisi itu, ekspansi alam semesta yang semula melambat, berubah menjadi ekspansi yang dipercepat. Transisi itu terjadi pada epoch sekitar z = 0.46 ± 0.13, atau sekitar ketika ukuran alam semesta 68% ukuran saat ini.

Properti Energi Gelap

Sampai saat ini, amat sedikit diketahui tentang energi gelap. Tapi setidaknya kita mengetahui sedikit properti energi gelap, yaitu:
  1. Tidak memancarkan gelombang elektromagnetik
  2. Memiliki tekanan negatif yang besar. Besarnya tekanan yang berorde sama dengan densitas energinya, menunjukkan bahwa ‘energi gelap’ ini lebih bersifat energi daripada materi (pada materi tekanan jauh lebih kecil dibandingkan dengan densitasnya). Karena itu, energi gelap ini berbeda dengan materi gelap
  3. Tidak mengumpul membentuk gugus dengan materi secara signifikan, setidaknya sampai seukuran gugus galaksi.
Hasil pengamatan CMB menunjukkan bahwa dalam skala besar, alam semesta kita (hampir) homogen dan isotropis. Dan sebagaimana yang digambarkan oleh model standar kosmologi, alam semesta bisa didekati sebagai fluida sempurna. Energi gelap dapat diparametrisasi dengan persamaan keadaannya (w), yang merupakan perbandingan tekanan dengan densitasnya. Agar struktur dalam alam semesta yang teramati saat ini bisa tumbuh dari perturbasi densitas (sebagaimana yang diamati pada CMB), maka nilai w haruslah berharga lebih kecil dari -½.
Sementara itu, untuk alam semesta datar (sebagaimana yang kita amati), parameter perlambatan (q0) saat ini adalah q0 ~ ½ =w. Dan karena nilai w < -½, maka q0 < 0, menunjukkan alam semesta saat ini sedang mengalamai ekspansi dipercepat. Hasil pengukuran dari WMAP (dari pengamatan CMB) memberikan harga w < -0.980 ± 0.053.
Kandidat Energi Gelap
Ada beberapa kandidat apa sebenarnya energi gelap. Kandidat utama energi gelap itu adalah:
  1. Konstanta kosmologi / Energi vakum
  2. Quintessence (medan skalar dinamis)
  3. Gravitasi yang melemah
1. Konstanta Kosmologi, Λ
Konstanta kosmologi adalah faktor yang dimasukkan dalam persamaan Einstein dalam relativitas umum. Konstanta kosmologi ini awalnya dimaksudkan untuk mengimbangi gravitasi supaya diperoleh gambaran alam semesta yang statis (yang kemudian oleh Einstein disesali karena kenyataan obervasi oleh Hubble menunjukkan alam semesta yang mengambang, sesuatu yang harusnya terlebih dulu bisa diramalkan oleh relativitas umum). Eksistensi konstanta kosmologi ini kembali mencuat akhir-akhir ini, dan mencapai puncak ketika terdeteksi keberadaan energi gelap.
Sementara itu, dari teori medan kuantum yang kita miliki saat ini, diketahui bahwa ruang vakum juga memiliki energi, yang dinamakan energi vakum. Untuk energi vakum, w = -1. Dan secara matematis, energi vakum ini sama dengan konstanta kosmologi yang berasal dari relativitas umum. Konstanta kosmologi ini menjadi salah satu kandidat terkuat dari energi gelap.
Dari observasi supernova, disimpulkan energi gelap tidak berubah sepanjang waktu, atau minimal hanya berubah sangat sedikit sejalan dengan waktu. Jadi untuk sementara, konstanta kosmologi merupakan kandidat terkuat sebagai energi gelap, karena didukung oleh observasi. Hasil observasi dari 70 supernova oleh tim SNLS (Supernova Legacy Survey) untuk sementara menunjukkan bahwa energi gelap hanya berubah sangat sedikit. SNLS ditargetkan mempelajari 700 buah supernova menggunakan teleskop-teleskop besar dunia dan diharapkan lebih banyak mengungkap tentang energi gelap.
Tapi jika konstanta kosmologi adalah energi gelap, ada setidaknya dua masalah besar. Masalah pertama adalah dari segi ordenya, dan masalah kedua adalah dari segi waktu diaman ia mulai dominan.
Jika kita mencoba menghitung besar orde energi gelap dari beberapa pendekatan berbeda, kita akan mendapatkan orde besarnya energi gelap: 10-10 (eV)4 – 10112 (eV)4. Jadi Λ membutuhkan fine-tuning dari rentang kemungkinan yang teramat besar tersebut supaya konvergen ke harga tertentu. Ini dikenal dengan masalah fine-tuning problem.
Masalah kedua terlihat jika kita meninjau bagaimana perubahan parameter densitas energi gelap terhadap waktu, jika energi gelap itu adalah konstanta kosmologi. Misalkan parameter densitas konstanta kosmologi ditulis ΩΛ = ρΛcr. Dari pengamatan CMB, diperoleh bahwa ΩTotal = 1 dan (jika energi gelap adalah konstanta kosmologi) ΩΛ=0.7. Harga ΩΛ berubah sejalan dengan pengembangan alam semesta, karena pΛ konstan. Maka evolusi ΩΛ sejalan dengan ρcr ~ (1 + z)-3, dengan z adalah redshift. Pada z > 10, harga parameter densitas ΩΛ < 0.001. Sedangkan pada z < -0.9 nanti, harga parameter densitas ΩΛ > 0.999.
Jika dibuat plot ΩΛ terhadap log R untuk rentang -60 < log R <+60, akan terlihat seperti fungsi tangga (step function) yang berubah dari nol menjadi satu pada era saat ini. Bahkan jika dibuat plot dΩΛ/dR (yang berbentuk seperti fungsi delta dirac), dapat dilihat bahwa kita hidup tepat di tengah puncak fungsi delta dirac tersebut. Pertanyaan kenapa kita hidup di era yang spesial ini, dikenal dengan coincidence problem.
2. Quintessence
Quintessence adalah medan skalar yang bergulir-lamban (slow-rolling scalar field). Salah satu properti penting dari quintessence adalah coincidence problem bisa lebih masuk akal dijelaskan, karena persamaan keadaan bergantung waktu. Prediksi yang paling umum dari quintessence adalah nilai dari persamaan keadaan w(t) berbeda dari -1, dan berubah terhadap z.

3. Gravitasi Yang Melemah

Masih ada kemungkinan bahwa sebenarnya materi gelap itu tidak ada. Tetapi efek yang kita amati saat ini (yang menuntun kita pada kesimpulan adanya energi gelap) sebenarnya adalah efek dari runtuhnya relativitas umum Einstein pada skala yang amat besar. Menurut teori ini, pada skala yang amat besar, efek kebocoran gravitasi ke dimensi yang lebih tinggi semakin mungkin diamati.
Prospek Observasi Dark Energy Ke Depan
Untuk lebih tahu banyak tentang energi gelap, satu-satunya cara (setidaknya untuk saat ini) adalah lewat pengamatan astronomis. Dari sisi fisika partikel tidak memungkinkan memberikan batasan pada energi gelap lewat akselerator, karena sifat energi gelap yang diffuse dan merupakan fenomena energi-rendah.
Misi masa depan Supernova Acceleration Probe (SNAP). kredit: SNAP
Untuk memberikan batasan pada energi gelap, pengamatan dan penelitian yang bisa dilakukan adalah:
  • Pengukuran sejarah ekspansi H(t)
  • Persamaan keadaan w(t) yang bergantung waktu
  • Mencari jika ada properti penggugusan energi gelap
  • Mencari adakah dan bagaimana hubungan (couple) antara energi gelap dengan materi gelap
  • Menguji lebih detail kevalidan relativitas umum
Untuk pengukuran sejarah ekspansi digunakan pengamatan sejumlah besar supernova dengan rentang z tertentu. Karena pada awal alam semesta (z besar) energi gelap belum dominan, sedangkan pada z kecil kurang sensitif untuk pengukuran efek dari energi gelap, maka rentang z yang memadai untuk pengamatan adalah 0.2 ≤ z ≤ 2.
Persamaan keadaan bisa menggunakan supernova. Sampel kualitas tinggi dari 2000 buah supernova dengan z antara 0.2 sampai 1.7 bisa memberikan harga w dengan ketelitian σw = 0.05 (dengan asumsi irreducible error sebesar 0.14 magnitud). Jika ΩM bisa didapat cara independen dengan harga lebih baik dari σΩM = 0.03, σw akan meningkat dengan faktor 3 dan perubahan w terhadap redshift – w’ = dw/dz – dapat diukur dengan ketelitian σw’ = 0.16.
Selain lewat supernova, w juga berpotensi dipelajari lewat pengamatan galaxy-count dan galaxy cluster count.
Efek weak gravitational lensing (WGL) bisa juga digunakan untuk mempelajari w. WGL oleh LSS pada medan seluas 1000 derajat persegi atau lebih, setara dengan sensitivitas pengamatan w lewat supernova seperti yang disebutkan di atas. Hanya saja WGL tidak bisa digunakan untuk mempelajari variasi w terhadap waktu. Dan masalah sistematis yang dihadapi pada pengamatan WGL masih belum banyak dipelajari secara lebih teliti.
Saat ini, ada beberapa proyek yang dikembangkan yang bertujuan khusus untuk mengamati dan mempelajari energi gelap. Misalnya SNAP (Supernova/Acceleration Probe), JDEM (Joint Dark Energy Mission), dan beberapa lainnya. Untuk SNAP sayangnya NASA menunda misi ini lima tahun karena adanya prioritas mengirimkan manusia ke Mars.
Mengapa mempelajari energi gelap?
Sampai saat ini, energi gelap hanya bisa dipelajari lewat pengamatan astronomi. Dan yang paling besar prospek pengamatan untuk mempelajari energi gelap ini adalah lewat pengamatan supernova. Alat yang paling efektif untuk mempelajari supernova ini adalah teleskop yang berada di luar angkasa, teleskop Hubble. Hubble bisa difungsikan menjadi mesin pemburu supernova yang amat penting bagi mempelajari energi gelap. Ini dibuktikan (antara lain) lewat pemakaian Hubble oleh Reiss dan timnya untuk menentukan epoch transisi dimana energi gelap mulai mendominasi alam semesta. Sayangnya dengan diberhentikannya perawatan Hubble maka umur teleskop Hubble hanya sampai sekitar tahun 2007-2008. Dan dengan kehilangan alat penting mempelajari energi gelap, kemajuan pengertian kita tentang energi gelap tidak akan secepat yang seharusnya kita bisa dengan teknologi yang kita punya saat ini.
Dengan mempelajari energi gelap ini, kita bisa mengetahui bagaimana ujung dari evolusi alam semesta. Pengamatan persamaan keadaan energi gelap juga bisa berpengaruh pada fisika teori / fisika partikel, dan pada relativitas umum. Jika kita bisa menentukan nilai dari persamaan keadaan energi gelap, kita bisa menentukan apa sebenarnya energi gelap itu. Dan jika energi gelap itu memiliki persamaan keadaan w = -1, maka energi gelap adalah konstanta kosmologi, dan kita masih harus berurusan dengan fine-tuning problem dan coincidence problem. Jika w < -1 maka kita akan menemukan masalah dalam teori relativitas umum pada skala amat besar.
Ada dua sasaran yang realistik untuk satu dekade ke depan: menentukan persamaan keadaan sampai ketelitian 5%, dan mencari variasinya terhadap waktu. Setelah berhasil menentukan persamaan keadaan, maka sasaran berikutnya adalah mendeteksi sifat penggugusannya. Ini akan memberikan kita pengetahuan yang penting tentang apa dan bagaimana energi gelap.

Tags: ,

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

IKEYA-MURAKAMI, KOMET BARU DI RASI VIRGO

Dua pegamat langit dari Jepang berhasil menemukan komet baru di konstelasi Virgo. Kaoru Ikeya dan Shigeki Murakami, merupakan 2 astronom amatir Jepang ini berhasil menemukan komet yang kemudian diberi nama Ikeya- Murakami atau C/2010 V1 melalui pengamatan visual.
Komet Ikeya-Murakami yang dipotret Ernesto Guido dan Giovanni Sostero dengan menggunakan teleskop Global-Rent-a-Scope (GRAS) di New Mexico. Kredit : Ernesto Guido & Giovanni Sostero
Penemuan yang dilakukan secara terpisah ini memperlihatkan penampakan komet Ikeya-Murakami dengan kecerlangan antara 8-9 magnitudo.  Kaoru Ikeya menemukan C/2010 VI saat melakukan pengamatan dengan menggunakan teleskop reflektor 25 cm. Pengamatan terpisah dilakukan oleh  Shigeki Murakami dengan menggunakan teleskop reflektor 46 cm. Dengan kecerlangan 8-9 magnitudo, komet ini masih bisa diamati menggunakan binokular yang baik.
Penemuan komet ini merupakan hal menarik karena saat ini, penemuan komet melalui pengamatan visual semakin langka.

Lokasi Komet C/2010 V1

Komet C/2010 V1 yang berlokasi di konstelasi Virgo tersebut, saat ini dapat dilihat pada kondisi langit yang cerah sekitar 2 derajat dari Saturnus saat menjelang fajar. Pada tanggal 25 – 30 November, komet Ikeya-Murakami akan tampak di antara Venus dan Spica.
Kalkulasi orbit yang dilakukan Brian G. Marsden pada komet C/2010 V1 menunjukkan kalau komet ini bergerak dalam orbit parabola dan baru saja melewati posisi perihelionnya pada jarak 1,7 SA.
Konfirmasi keberadaan komet Ikeya-Murakami melalui hasil fotografi dilakukan oleh Ernesto Guido dan Giovanni Sostero dengan menggunakan teleskop Global-Rent-a-Scope (GRAS) di New Mexico.
Komet Ikeya-Murakami pada tanggal 9 November 2010 dini hari tampak di dekat Saturnus jelang dini hari. Kredit : Stellarium
Komet Ikeya-Murakami yang tampak pada tanggal 28 November 2010 di antara Venus dan Spica menjelang fajar. Kredit : Stellarium
Data komet Ikeya-Murakami untuk dimasukkan ke Stellarium (tambahkan di bagian akhir file ssystem.ini)
[2010V1]
name = C/2010 V1 Ikeya-Murakami
parent = Sun
radius = 24
oblateness = 0.0
halo = true
color = 1.0,1.0,1.0
tex_halo = star16x16.png
tex_map = nomap.png
coord_func = comet_orbit
orbit_TimeAtPericenter = 2455488.31671
orbit_PericenterDistance = 1.71541
orbit_Eccentricity = 1.0
orbit_ArgOfPericenter = 155.076
orbit_AscendingNode = 5.844
orbit_Inclination = 8.913
lighting = false
albedo = 1
sidereal_period = 365.25

Tags: 

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS